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Water jets are produced by vertically accelerating a rotating cone partially 
filled with water. It is shown that the acceleration of the parabolic meniscus 
results in a motion similar to that observed in a shaped explosive charge (Monroe 
jet). Acceleration of the cone is effected by means of an inductive electromagnetic 
accelerating device (conical pinch) whose theory is developed in terms of the 
WKB approximation. A second-order inviscid theory for the motion of the 
fluid in the cone in terms of the Penney-Price linearization procedure is pre- 
sented and it is shown that good agreement for the jet head velocity can be 
achieved for low velocities. At higher velocities, experimental results appear to 
lag behind the theoretical ones, probably owing to the dispersal of the jet head 
through viscous drag with the surrounding atmosphere. The shape of the jet at  
early times is well represented by first-order theory. 

1. Introduction 
High-speed water jets have for some time been used for drilling, cutting and 

shaping various materials. The advantages of this technique lie in the small 
width of cuts attainable and the avoidance of the necessity to sharpen the tool. 
Since most methods of water-jet production comprise a high-pressure pump 
followed by pipes, nozzles and possibly hydraulic intensifiers, the maximum 
stagnation pressures attainable in the jets depend on the strength of the walls 
used to enclose the hydraulic circuit. To overcome this limitation, it has been 
suggested that some form of hydrodynamic jet intensification involving converg- 
ing flow be used. One such device is the Monroe jet or shaped charge. In  this 
case an explasive charge containing a conical hole lined with a layer of metal is 
exploded at  the end nearest the apex of the cone. The resulting detonation wave 
compresses the metal lining, causing it to flow towards the centre-line and 
along it to form a narrow jet of considerable speed and penetrating power. The 
theory of this mechanism has been fully explored and tested experimentally 
(Birkhoff et ab. 1948; Clark 1949; Pugh, Eichelberger & Rostoker 1952; Singh 
1972; Eichelberger & Pugh 1952). As the jet is free-standing it does not require 
confining walls and hence the problem of wall strength does not arise. Obviously, 
the repeatibility of such a device is severely limited by the fact that the source of 
the jet is totally destroyed in the process. For this reason the suggestion has been 
made that the explosive charge be replaced by a magnetic compression device 
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and the metal lining by some sort of liquid film. That magnetic pressures of 
great magnitude can be generated has recently been shown by Bless (1972). 
It remains to couple the magnetic force in some way to the liquid film. Prelimi- 
nary experiments in this laboratory, using a layer of mercury, indicated that the 
liquid becomes unstable under an external magnetic field and no jet is formed. 
Further experiments using non-conducting fluids contained in a deformable 
hollow metal cone were equally unsuccessful, as the cone became subject to 
elastic instability, except in the case of small strain, as will be further discussed 
below. 

As the theory of the Monroe jet uses nothing but ideal, incompressible and 
inviscid fluid characteristics, it  may be argued that a cone lined with a liquid 
layer and accelerated along its axis is in fact equivalent to a cone that collapses 
in a manner in which all points on the cone wall approach the centre-line with 
equal velocity, the only difference being that in the former case an additional 
shear velocity along the cone wall is imposed, which, since the liquid is assumed 
inviscid, does not alter the mechanics of the motion. This is the solution adopted 
in this work, whereby the liquid layer is produced by rotating the cone about its 
axis. It will be shown in the following that, although the liquid layer produced in 
in this way is by no means of uniform thickness, the velocity amplification 
of the resulting jet relative to the cone is considerable and when the parabolic 
meniscus is tangential to the cone corresponds to the findings of the Monroe jet 
theory. 

The theory of electromagnetic acceleration of a mass due to the discharge of a 
condenser through a coil has been developed in terms of the Wentzel-Kramers- 
Brillouin (WKB) approximation and will be reported elsewhere. The most im- 
portant result of this theory concerns the energy transfer efficiency, i.e. the ratio 
of the kinetic energy of the mass to the total electrical energy initially stored in 
the condenser, and its dependence on the applied voltage. Agreement with experi- 
mental results is good (figure 1) providing that the effect of the virtual mass of 
the fluid is taken into account. 

The theory of jet motion developed in the following bears some resemblance 
to the work of Moore & Perko (1965)) Bowman (1966)) Milgram (1969) and Moody 
& Reynolds (1971). All of these authors except Milgram were concerned with 
fluid under the action of accelerations and decelerations. Moore & Perko con- 
sidered cylindrical vessels with a plane bottom and an initially non-plane free 
surface. They developed the theory in terms of a semi-analytic expansion pro- 
cedure, whereby a series of orthogonal functions with time-dependent coefficients 
was obtained. Bowman linearized the equation of motion about a plane free sur- 
face, considering the effect of surface tension on the free-surface pressure dis- 
tribution. Milgram considered the motion of fluid in a cylindrical tank under the 
action of a vertical impact and studied the motion of the free surface, initially 
distorted by interfacial tension at  the container wall, in terms of a Taylor-type 
instability. Moody & Reynolds developed a general computer code for the study 
of free-surface motion and applied this technique to the sloshing in tanks. There 
appears, however, to be no analytic solution to the related problem of surface 
instability in a container with non-cylindrical walls. In  what follows, the action 
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of acceleration both on an initially distorted free surface and on a conical con- 
fining surface will be taken into account. Before attempting a solution of this 
problem, we shall first study the conditions under which a paraboloidal free 
surface in a rotating cone can be maintained. 

2. Hydrodynamics of jet formation 
2.1.. Stability of rotating liquid in a cone 

If a circular cone partially filled with liquid is rotated about its axis, the meniscus 
of the liquid rises to form a paraboloidal free surface. Contrary to what occurs in 
a vessel with cylindrical sides, this process cannot be continued to ever-increasing 
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FIGURE 2. Co-ordinate system. 

rotational speeds. When the rotational speed reaches a value at which the para- 
boloid becomes tangential to the side of the cone, the liquid becomes unstable and 
spills over the edge of the cone. Thus the limit on creation of a liquid layer in this 
manner is imposed by the existence of a critical rotational speed. We shall 
calculate this speed from simple geometrical considerations. 

Figure 2 shows the cross-section of a half-cone with apex angle 60. The height 
of the liquid at  zero rotational speed is H ,  and the radius of its meniscus R,. 
When rotated it rises to a height of H ,  and a radius of R,. Pressure balance at  the 
paraboloidal meniscus demands that the meniscus assumes a shape given by 

g(H1-r1-Z) = 8Qz(~"RR2,). 

Volume integration shows that the volume of the liquid is 

+R:nH,- (RtnQ2/4g), 

where Q is the angular velocity and g the acceleration of gravity. This volume 
must equal the volume i R $ n H ,  of the unrotated liquid. In  addition we have from 
geometrical considerations 

tan8, = R,/H, = R,/H,. 

From this and the volume balance equation we obtain 

R";-4gR~(cot8,/3Qz)+4R~g(cot8,/3~2) = 0. 

This quartic equation in R, has the form 

X 4 - M X 3 + N  = 0. 

The meniscus is tangential to the cone provided that this equation has two coin- 
ciding roots, the condition for which is 

27M4 = 256N, 
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from which the critical rotational speed Q* is obtained: 

51" = (2-) cos 0,) (g/Ho)k (1) 

This relation is shown graphically in figure 3, where the critical speed is plotted 
against the initial depth h = HI - H,. Also shown are experimental points ob- 
tained with water and mercury. The agreement may be considered fair in view of 
the presence of capillary effects and the difficulty in determining the critical 
point exactly. 

2.2. Jet formation under artijcial gravity 
We shall here diverge somewhat from the classical theory of Monroe jet formation, 
as in our case the liquid layer is not of uniform thickness. An observer moving with 
the cone will conclude that the meniscus is the proper equilibrium shape resulting 
from the action of gravitation and the centrifugal force. As the cone accelerates 
upwards, the observer will experience a sudden increase of apparent gravity and 
will rightly conclude that the meniscus must assume a different shape. The 
unsteady motion of this readjustment will cause a jet to develop near the trough 
of the meniscus which will rapidly move ahead of the edge of the cone. How this 
motion is influenced by the rotational speed and the filling level of the cone will 
be analysed in the following. 

Since for practical reasons interest is centred mainly on a knowledge of the 
velocity of the head of the jet, much valuable information can be gained from a 
linearized analysis. The full problem involving the nonlinear terms in the hydro- 
dynamic equations as well as considerations of a free surface of ever-changing 
shape requires extensive numerical study and will therefore not be studied 
here. On the other hand, Penney & Thornhill (1952) have shown that a linearized 
treatment with initially fixed surfaces may yield valuable information relating 
to such problems as the collapse of a fluid column under gravity. This approach 

45-2 
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will be adopted in the following. The fluid in the cone is considered ideal, inviscid 
and incompressible and, while the paraboloidal meniscus is formed by rotational 
effects, all further influence of rotation on the motion is neglected. This latter 
assumption may be subject to revision in certain cases, as will be shown below. 

The essence of the method of Penney & Thornhill lies in the neglect of the velo- 
city convection terms in Euler’s equation, together with considering the free 
surface to be acted upon by the hydrostatic pressure of the fluid column above 
the lowest point. This simple interface condition arises naturally through expan- 
sion of all coefficients of the orthogonal expansion of the velocity potential in 
terms of a power series in time, retaining only the lowest-order term. To this 
order in the time expansion the effect of the distortion of the interface from its 
rest position on the pressure condition need not be taken into account. The fluid 
adjacent to the other bounding surfaces is subject to the usual conditions of 
vanishing transverse flow. If all surfaces involved are members of the same ortho- 
gonal set of co-ordinate surfaces, the problem is solved at once by the method of 
eigenfunction expansion. Though, unfortunately, the paraboloidal meniscus 
and the conical container do not belong to the same co-ordinate system, a two- 
step approximation procedure has been adopted and was found to give useful 
information about the motion for the case where the distortion of the free surface 
is not too great. However, to permit this last step, it  is necessary to make the 
additional assumption that the cone is slender, i.e. that its apex angle is small. 

First-order approximation. We adopt the spherical polar co-ordinate eystem 
depicted in figure 2. We seek a solution of Laplace’s equation for the velocity 
potential q5 subject to the boundary conditions 

a$/a8 = 0 for 8 = 8,) ( 2 4  

a$lat = p / p  = x d V / d t  at the free surface. ( 2 b )  

The first of these conditions expresses the fact that there is no flow across the 
surface of the cone. The second, in whichp is the pressure, p the density and V the 
vertical velocity of the cone, is derived from the condition of Penney & Thornhill 
that the pressure on the free surface is equal to the hydrostatic pressure due to the 
height of the fluid above the parabolic tr0ugh.t To first order, the free surface is 
defined as r = r l .  This is in accordance with the assumption that the cone is 
slender and that the constant radius vector describes an essentially plane surface. 
The general solution of Laplace’s equation can be written thus: 

9 = L4,(r /B1)~ P,(COS e), 
where the A ,  are undetermined constants and the P, are Legendre functions. 
Since B0 is assumed small, all the running indices (which may be non-integer) 
will be large. It is therefore permissible to substitute the asymptotic Bessel- 
function representation for the Legendre functions 

t It is assumed that d V/dt is much larger than g. 
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where the qn are the zeros of the Bessel function Jl(q,). Writing the equation of 
the parabolic surface in figure 2 as 

x = yp2 where y = Q2/2g, 
we see that (z/y)+ = (r ,+x)  tan8 2: (r l+ z )  8, 
where the tangent has been replaced by its argument in accordance with the 
slender-cone assumption. Solving for z to second order gives 

2 -N y82r2,, 
andwe obtain for ( 2 b )  

= yB2r2, d V/dt at the free surface. 

Integrating with respect to t yields 

= yV8'r2,. 

This is the h a 1  form of (2 b) .  Together with (3) we therefore have 
(4)  

L 4  n Jo((I, 8/80) = 7 70; r; (s/~o)2. 
This is Dini's form of a Fourier-Bessel expansion, which can be solved immedi- 
ately by employing the series representation 

W o ( Q n X )  {Qn2/Jo(4n)) = $x2, 

An = 4V7yK??4i2/J0(4,). 

from which it follows that the coefficients of the series are 

To determine the velocity components on the free surface, we remember that 

V~ = a$/ar, vg = r-ya$/ae), 
whence on the free surface 

V ,  = 4Vy6~,~ ,F(8 /8~) ,  v, = 2Vy00~1(8/80). ( 5 )  

m4 = XJo((Inx) @ w o ( Q n ) ) ,  (6) 

The function P ( x )  is the sum of the series 

where the term - t has been neglected relative to the much larger values of qn/BO. 
Approximate summation of the series F (x ) .  With (5) the first-order problem is 

formally solved; however, the series (6) is cumbersome and converges slowly. 
We shall attempt an approximate summation of this series in finite terms. Since 
the qn are large numbers, it  is admissible to represent Jo(qn) in terms of its asymp- 
totic value 

and as qn II n(n + $) it follows that (6) may be written as 
Jo((In) 2: (2/nQn)+ cog ((In - in), 

w4 = BnWo(qn4 Jo((In)* 

(7 )  

On the other hand we have 

Jo(nn) = n-l(2/n)& cos (nn - in) = n-tln. 
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Substituting in (6) for qn = n(n + 4) and neglecting 4 under the square root, there 
results 

If in (6) the argument qmx is replaced by xn(n + t )  and the addition theorem for 
Bessel functions is applied to the f i s t  two terms, we obtain 

F ( x )  = (n/Z*) C{J,(nn) J,(xnn) Jo(txn) - 2*Jo(qn) Jl(xnn) Jl($x)). 

B1(x) = gn Z:J0(xnn) Jo(nn). 

Jo(nn) = Z-q)(q,). (8) 

Consider the first term in this expression, i.e. 

Applying the product representation of Bessel functions (Magnus, Oberhettinger 
& Soni 1966, p. 95) 

Bl(x) = &C Jo {nn( 1 + x2 - ~x cos u)+} du 
!On 

and the Schloemilch series (Gradshteyn & Ryzhik 1965, p.976, formula(8.521.1)) 

CJo(nx) = - 4 + (l/x) 

we can sum the infinite series before evaluating the integral. Further, we use the 
definite integral (Gradshteyn & Ryzhik 1965, p. 387, formula (3.674.1)) 

s,” (1 - zp cos u +p2)-6 du = 2K(p),  

where K ( p )  is the elliptic integral of the first kind. Hence, we find that 

B1(x) = ${ - +n + (Z/n) K(x)}.  ( 9) 
Since the remaining term is a first-order correction, we are free to replace nn 
by qn, again neglecting in, and we get 

.zsl,(~) = ZJdQn) Jl(xqn), 

F2@) = C (2/n) J&%) { ! l 3 4 0 ( q n ) } ,  

B&) = -n-lx. 

F ( x )  = 2-”(*x.) { --nZ-l+ (2/n) K(x)}  +xJ1(*xn). 

or, using the asymptotic value for J,(qn) again, 

This is a summable Dini series : 

By substituting Fl(x) and B2(x) in the original expression, we obtain 

(10) 

As a numerical check we calculate F(O), finding B(0) = 0.40361, and compare 
this with the value 0.38485 obtained by direct summation of the series. The error 
is less than 5 %. 

Virtual m m ~  ratio. The final efficiency departs from the transfer efficiency 
calculated above because along with the fluid, a metallic cone has to be acceler- 
ated, and by itself does not contribute to the penetrating action of the jet. 
Moreover, the mass is not to be taken as the actual rest mass of the cone-fluid 
system but must contain the virtual mass of the fluid created by the flow itself. 
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We shall now derive a first-order expression for the ratio of the virtual to actual 
mass of the fluid. 

The vertical component of the integrated pressure forces acting on the side of 
the cone is 

f, = 21rS r1 rp sin2 eo dr = zn02/; rp dr 

and from the expression for the pressure in terms of the velocity potential and 
the solution (5) 

0 

The mass force is 

whence the virtual mass ratio 
fm = m(dv/d t ) ,  

The infinite series may be summed in terms of the 7,b function (logarithmic deri- 
vative of the gamma function) to give 

f v m  = i + n2rlg-1 [I - 48(9ne0)-1{+(z + 30,/zn) - +(:)}I. (11) 
fm 

Substituting (1) for the angular velocity, one sees that, in the case of a 12' cone, 
the virtual mass is increased by more than 60 yo. 

Second-order approximation. The first-order approximation was derived on the 
assumption that only the pressure force was influenced by the curvature of the 
free surface and that the resulting flow proceeded as if the interface were plane. 
We shall now attempt to improve upon this approximation by partially taking 
account of the fact that the pressure condition (Zb)  is to be applied to the actual 
shape of the meniscus rather than to its rest condition. We write the equation 
for the parabolic meniscus in polar co-ordinates as follows: 

r/Ho = i -a +p(ez/e;), (12) 

where a and ,8 are constants depending on the speed of rotation. In  the following 
we shall use a non-dimensional parameter S which fully describes the motion, 
together with the cone apex angle 0,: 

s= n ~ e o H o p g )  = Fr/(8Ro2), (13) 

where Fr is the Froude number and Ro the Rossby number referred to the charac- 
teristic length eoH0. From the geometrical considerations of $2.1 it follows that 

a = +wo, p = se,. (14) 

The procedure to be followed subsequently involves the substitution of (12) in (3)) 
where we have adopted Ho as reference length in place of H,, expanding the result- 
ing trinomial to first order according to the binomial theorem and replacing 
A ,  by the sum of the two coefficients representing the coefficients of the Dini series 
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for x2 and x4 multiplied by unknown constants a and b respectively. Since the 
whole series must equal the pressure on the meniscus and therefore be propor- 
tional to x2, we must adjust the constants a and b in such a way that any terms in 
x4 vanish and that the coefficient of x2 corresponds to that on the right-hand side. 
Neglecting - 8 again relative to qn/O,, expanding ( 1 2 )  raised to the power q J 9 ,  to 
two terms, substituting in (3) and equating this to the pressure (4), we obtain 

Z(an+bn)  ( 1 - ( ~ m / ~ o )  (a-Px'))Jo(Qnx) = J ' Y ~ ~ H ~ ~ ' ,  
where an = 4aa~~/JO(a , ) ,  bn = s k 2 ( 1 - 8 / ~ 3 / J o ( q n )  

are respectively the coefficients of the Dini series representing ax2 and bx4. 
Summing the resulting series gives 

(15) 

where P ( x )  is the function given in (10). Note that the term resulting from multi- 
plication of the series for b& with qn has been omitted, in accordance with order- 
of-magnitude considerations. P(x)  must now be expanded in terms of x2 and a 
and b must be chosen such that the x4 term disappears and the x2 terms balances 
the right-hand side of (15) .  From (10)  we find that 

a x  - (4a/B,) (a -/3x2) P(x)  + bx4 = ?'~O:H:Z', 

P(x)  = 2-*(2-n)+*x2(1+$n) ,  

whence 

2pvye,~;(i +a 29 + 4 24(n - 2)) 
1 + 2p0;12-q2 - - zae,-l(i + an) * 

b =  

Now, the quantity of greatest interest is the velocity of the head of the jet, i.e. 
vro = v,(O = 0 )  = aO/ar(O = 0). Returning to the series representation of the 
velocity potential: 

Note that in the second term the 1 -a term has been omitted to keep orders of 
magnitude correct. The first term in this may be written, using the approximate 
value for qn and the asymptotic expression for J,(q,), as 

X 4 p  exp {(me-l+ $no-1- Q )  log (1 - a)}J,(nn) 29. 

We expand log (1  -a) = - a and use the Schloemilch series (Magnus et al. 1966, 
p. 131) to the second order: 

ZJ,(nn) exp ( -nu) = - Q + (a2 + n2)+ +&a. 

The second term in (15a) was summed term by term and gave the value 0.77021 b .  
Taking all terms together and expanding a and b to first order in a and ,8 we get 
finally 

where 
?Jro/v = 2 q - l + + n ) s ( l - s U ) ,  (16) 
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FIGURE 4. Shape of jet for early times: oomparison with photographs. 
- , theory. Experiment: A, 4VyO,r, = 0.75; 0, 4Va00r, = 0-50; 0, 4Vyf4,rl = 0.25. 

This is the second-order expression for the velocity amplification ratio, i.e. the 
factor by which the velocity of the cone is multiplied to obtain the velocity of the 
head of the jet. It must be remembered that the whole treatment was carried out 
in a co-ordinate system travelling with the cone. To convert to a system at rest 
in the laboratory frame, one must add unity to (16). The largest possible value 
of this ratio is obtained for the case of critical rotational velocity (1). In this case 
S = AS,,, = 0.31498/8,. In  our experiments Bo = 15n. This yieldsin the laboratory 
frame (w,.~/V),,, = 6.12958. 

It is interesting to note that to first order in Smax, wro/ V becomes inversely pro- 
portional to 8,; this is in agreement with the findings of the classical theory of 
shaped charges. 

Shape of j e t  proJile for small times. From (5) it is possible to obtain the shape of 
the jet by simply integrating them with respect to time. It must be remembered 
that in this treatment the convection terms in Euler’s equation were neglected; 
all solutions apply therefore only to small times. Hence, it is not necessary to 
proceed to the second order in calculating the jet profile, as the first order will 
yield enough information for the case of low distortion of the free surface. 

Figure 4 shows a number of profiles calculated for progressively larger values of 
time. A distinctive feature of these curves is the rapid negative motion of the 
fluid near the cone wall. This is due to the logarithmic infinity of K(x)  in (10) 
as x approaches one. In  the experiments some breakup of the fluid is observed 
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FIGURE 5.  Streamline in half-cone for frame a t  rest in cone. 

near this region owing to cavitation caused by the large negative pressures 
generated. In  figure 4 some experimental points taken from photographs of the 
developing jet are also shown. The agreement appears to be satisfactory in view 
of the assumptions made and the difficulty in maintaining good experimental 
conditions. Poorest agreement is found at  earliest times, probably owing to the 
fact that the initial free surface was not plane, as assumedin the first-order theory. 

Streamlines. The streamiines of the first-order solution can be obtained from 
the definition of the stream function $: 

hence from ( 5 )  : 

where the A ,  are the coefficients of the Dini series given before. The streamlines 
are shown plotted in figure 5 for the case of a cone of apex angle 24" (8, = 12'). 
The large negative velocities near the cone wall are again apparent in this figure, 
as well as the accumulation of streamlines near the axis of the cone where the jet 
is formed. It must be noted that the stream function (17) applies to a frame of 
reference fixed in the moving cone; for a frame stationary in the laboratory, the 

V ,  = r-20-1(8$/88), ve = - (r0)-1(8$/8r); 

$ = XA,H18( 1 - BO/2p,) (r/Hl)("n'eo~+~J,(q,0/8,), (17)  

term 
must be added to (17). 

3. Experiments 
3.1. General considerations 

The experimental rig consists essentially of a condenser bank discharging into 
a conical single-turn coil carrying the rotating cone. The similarity with a plasma 
pinch (theta pinch) experiment is obvious; however, the design criteria are some- 
what different. As in the plasma pinch experiment, the time constant of the 
discharge must be kept small to ensure that the magnetic field of the coil does not 
penetrate through the wall of the cone. This is usually achieved by keeping the 
circuit inductance Lo as small as possible, a requirement which also guarantees 
that the inevitable nonlinear change of inductance with cone displacement is kept 
to a minimum. The theory shows, on the other hand, that the linear change of 
this quantity should be maximized. To reconcile these two requirements a 
transformer was designed with a, turns ratio of 40: 1 and a ferrite core for high- 
frequency operation. This represented a compromise since a higher turns ratio 
would involve an intolerable increase in circuit inductance caused by flux leakage. 
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FIGURE 6. Schematic diagram of transformer and coil. 

3.2. Transformer and coil 

A schematic diagram of the transformer is shown in figure 6. The ferrite core 
is enveloped in a thin layer of mylar sheet insulation which carries the 40-turn 
primary coil wound with square-section magnet wire. A further layer of insulation 
separates this from the secondary coil, which is a &in. thick split copper tube, 
which in turn is encased in a 4 in. thick cylinder of steel to prevent the coil from 
spreading under the action of the magnetic pressure. The conical pinch coil is 
silver-soldered to the gap in the secondary coil and is held firmly to the transfor- 
mer by means of a &in. retainer plate bolted to two jaws welded to the steel 
cylinder. The coil itself is a split brass block of square cross-section, carrying a. 
conical hole into which fits the rotating cone. The coil is fitted with an air bearing 
supplied through a nozzle, while a second nozzle supplies air tangentially to the 
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cone to provide the torque necessary to make the cone rotate. The transformer is 
held between two Plexiglas rings and three steel bolts. 

The variable inductance L, was measured by mounting the cone, made of 
aluminium, on a traversing rig, the coil being clamped firmly to the base of the 
ring and the displacement of the cone being measured with a dial gauge. The 
inductance was measured on a Hewlett-Packard R-X meter (Schering Bridge) 
using a suitable frequency of the order of a megahertz. The readings had to  be 
modified to take account of the lower working'frequencies in the discharge circuit, 
owing to the greater penetration of the magnetic field. 

3.3. Linear velocity measurements 

The transformer-and-coil assembly was installed in the discharge circuit and the 
condenser bank charged to a voltage varying between 1200 and 7100V. The air 
cushion on which the cone floats is, as a rule, sufficient insulation to prevent the 
cone from shorting out the coil. For greater safety at  high levels of condenser 
voltage the external surface of the cone was anodized. 

The 'muzzle velocity' with which the cone leaves the coil on discharge was 
measured optically by projecting a collimated beam of light horizontally over the 
cone, through a 45" glass splitter plate and back again as a parallel beam about 
2 in. above the first. The light from this beam, together with a portion of the first 
beam separated from it by a half-silvered mirror, enters a photodiode, the output 
of which actuates an electronic interval counter. The discharge current is simul- 
taneously monitored with the aid of a Rogowski coil around one of the conductors, 
and an oscilloscope. The damped oscillatory signal obtained is analysed to obtain 
the frequency and, hence, the circuit inductance Lo, while the damping yields 
the total loss resistance R. As the transfer efficiency was found to be quite sma,ll, 
an approximate expression was used for comparison with experimental values. 
Results are shown in figure 1. The apparent break in the experimental curve 
around 4 kV is caused by the fact that, for operation with higher voltages, the 
pressure supplying the air bearing had to be increased to avoid flash-over 
between coil and cone, the resulting increase in the air gap giving a small change 
in the readings. 

3.4. Photographic experiments 

To compare the hydrodynamic calculations with experiment it was necessary 
to take high-speed photographs of the development of the jet. 

A burst of flashes (during &,us) illuminates the object while the film of an NRC- 
Dudgeon drum camera (Dudgeon 1962) is being exposed. This camera has a 
hollow drum carrying the film on the inside surface and mounted on air bearings 
and driven by an air turbine. Simultaneously, the rotational speed of the cone 
is measured by means of a marker painted on the edge of the cone, whose motion 
is detected by a light- and photo-transistor. The period between successive 
passages of the marker past the photo pick-up is measured on another interval 
counter. The rotational speed of the drum camera is monitored on an oscillo- 
scope. 

For better photographic contrast the cone was partially filled with milk, 
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instead of water. Typical results are shown in figure 7 (plate l), representing 
shots a t  different condenser voltages and cone rotational speeds. The voltage 
seems to have only a minor effect on the shape of the jet, except at high voltage, 
when the head of the jet seems to develop a plume of spray. This is seen more 
clearly on figure 8 (plate 2), which shows a single flash picture taken with a still 
camera. This plume appears to be caused by the drag in the stagnation-point 
boundary layer of the surrounding air. The resulting loss of fluid and, hence, of 
apparent forward speed of the jet head causes some difficulty in interpreting the 
results, as will be seen in the following. In  addition, the high-voltage shots also 
show the development of a thin precursor jet. It is thought that this jet is pro- 
duced by the elastic contraction of the cone under the magnetic driving field. 

It has been assumed in the mathematical analysis that the effect of rotation 
on the motion of the fluid (as opposed to the development of the meniscus) can 
be neglected. This is certainly true for early phases of the motion and at  high 
driving voltages. At low voltage and at  later times, however, figure 9 (plate 3) 
definitely indicates rotational effects. These are magnified by the fact that, as 
can be seen from the streamlines in figure 5, the fluid starting near the wall of the 
cone is forced towards the centre to form the jet. Owing to the conservation of 
angular momentum, the angular speed of the fluid composing the jet surface 
may attain considerable magnitudes. This is shown in figure 9, where the jet 
edge is seen to be subject to typical centrifugal instability, resulting in the 
ejection of droplets. 

3.5. Velocity amplification : comparison 

From a technical point of view, the most important quantity is the factor by 
which the head-of-the-jet velocity is amplified relative to that of the cone, i.e. 
the velocity amplification. An analytical expression of this quantity is given in 
(16). Comparison with experimental findings was made simply by measuring the 
respective slopes of the cone and jet exposures, figure 7. Absolute values of 
velocity are easily obtained bearing in mind the fact that the flashing rate and, 
hence, the time between exposures is tightly synchronized with the cycling 
rate of the counter decade. The scale of the pictures is obtained by exposing a 
measuring scale in place of the jet. Values of velocity thus obtained are found to 
agree closely with those measured photoelectrically as described in $3.3, taking 
into account the total mass of the cone plus fluid, including the virtual mass. Com- 
parison between the theoretical and experimentally determined velocity 
amplification vs. rotational speed of the cone is made in figure 10. It will be seen 
that the experimental points agree with the theoretical curve for low values 
of angular velocity but begin to diverge for higher values, and that the agreement 
is maintained for higher angular speeds for results obtained with lower driving 
voltages. This is explained in terms of lateral loss of fluid from the jet head as 
a result of the dispersal of fluid in the plume. Note that the curves are displaced 
vertically so that they pass through a point somewhat larger than unity as 
required by theory, This is due to  the fact that even a t  zero rotational speed the 
meniscus is somewhat concave, owing to interfacial tension between the fluid and 
the cone material. 
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FIGURE 10. Velocity amplification ratio flus. rotational speed: comparison of second-order 
theory with experiments. -, theory; ---, experiment. Experimental points; 0 ,  = 2 kV; 
0, = 3 kV; 0, q= 4kV; A, = 5 kV; v, = 6 kV. 

4. Conclusions 
It is shown that the mechanics of the explosively driven Monroe jet (shaped 

charge effect) can be simulated by means of a fluid in a rotating and vertically 
accelerated cone. The theory of the electromagnetic propulsion of the cone by 
means of a condenser discharge can be developed in terms of the WKB approxi- 
mation. The hydrodynamic theory, assuming an ideal, inviscid and incompres- 
sible fluid, is carried out in a two-step procedure, where the velocity amplification 
results from a second-order approximation. Good agreement is found with theory 
€or conditions where the velocity of the jet head is comparatively low; at  higher 
velocities the jet tends to be dispersed by frictional interaction with the sur- 
rounding air, making the apparent jet velocity somewhat lower than that pre- 
dicted. 

From the point of view of technological application, the coupling between 
condenser energy and the cone that could be attained in the present experiments 
was rather poor, resulting in a maximum apparent jet velocity of 230 ft/s (extra- 
polating for plume loss, this figure may be increased by a factor of 3). 
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